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Abstract 
 

We describe the methods we are developing to 
design behaviors for embodied agents in the form of 
autonomous vehicles.  Our work is based on a 
strategy we call graduated embodiment, in which 
high-level behavior algorithms that are initially 
developed using evolutionary computing methods in 
a relatively low-fidelity, disembodied modeling 
environment can be migrated to useful applications.  
We argue for biomimetic behavior engineering that 
is a hybrid of human design and artificial evolution, 
and evolutionary computing that is applied in stages 
to preserve building blocks and limit search space. 
We present our application of these methods to the 
concept of adaptive waypoints, which allow 
navigation behaviors to be re-used among vehicles 
with different degrees of embodiment, levels of 
fidelity, and modes of locomotion. 

 
1. Introduction 
 

The tasks of trying to figure out where you are, where you 
are going, and how to get there are some of life’s oldest 
dilemmas.  Navigation, positioning, and path planning are 
crucial to virtually every activity undertaken by animals and 
humans, yet the process often seems impossible to describe, 
model, or prescribe.  In the simplest examples, the goals and 
rules of motion allow for simple behavior algorithms that 
can be turned into human-generated computer programs that 
can control human-created systems.  But such programs are 
brittle and prone to failure if the system does not behave 
exactly as anticipated. 

The real world is full of contingencies, unexpected 
events, multiple (and often competing) goals, nonlinear 
responses, feedbacks, noise, and complex interactions across 
a wide range of time scales and levels of organization.  
Nevertheless, animals have evolved the ability to cope, 
prosper, and multiply in such a world.  Their robust 
behaviors give them the ability to navigate and “plan” their 

path of motion in order to migrate, search for food, return 
home, find mates, and avoid predators.  They are successful 
at these goals while simultaneously tending to lower-level 
tasks, adapting to changes in their environment, dealing 
with unfamiliar situations, and ignoring irrelevant 
information. 

Human-designed autonomous mobile robots must possess 
similarly complex and adaptive behaviors if they are to be 
useful for the types of problems for which they are being 
proposed.   Many of their goals are analogous to those of 
animals, and include migration, search, cooperation, 
exploration, location, and avoidance.  In some cases, the 
adaptive behaviors of animals can be applied to the 
development of autonomous robots; a method we call  
“biomimetic behavior engineering” (Boslough, 2002).  
Locomotion behaviors (such as dynamic soaring by 
albatrosses) can be analyzed and written into a control 
algorithm, but such purely “hand-coded” behaviors are 
usually unable to deal with the unexpected. 

The simple borrowing of behaviors observed in the 
animal world and applying them to robotics is insufficient.  
The external manifestation of a behavior can be simulated, 
but the actual behavior includes the internal processing.  
Real animal behaviors tend to be bottom-up and emergent, 
not top-down and “hard-wired”.  One can write a computer 
program that will appear to code a behavior that, in reality, 
emerges from a complex nonlinear dynamic balance of 
different processes.  Such programs can be useful for 
applications where the environment is predictable, but they 
amount to mimicry of external expression, not internal 
process.   The “external” method of biomimetic behavior 
engineering is a form of “classical artificial intelligence 
(AI)” and suffers from the same limitations. 

Our goal is to develop a paradigm for behavior 
engineering that generates robust, re-usable, and useful 
control systems for autonomous mobile robots.  Our 
primary application of interest is to develop goal seeking 
navigation behaviors. 
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2. Previous Research 
 

As this work builds on the work of others the related 
literature is presented with an overview of genetic 
programming and autonomous mobile robots, with an 
emphasis on navigation. 
 
2.1. Genetic Programming 

 
Research in the planning and control of mobile robots has 

received much attention in the past two decades.  We have 
chosen genetic programming (GP) methods to develop our 
robotic behaviors because this method has been 
demonstrated to work for “proof of principle” problems.  In 
his book, Genetic Programming III, Koza (1999) documents 
sixteen attributes that are needed for challenging a computer 
to solve a problem without explicitly programming it.  No 
other methods come as close as GP, which currently 
unconditionally possesses thirteen of the sixteen attributes. 
GP starts with a high level statement of what needs to be 
done, determines a basic sequence of how to do it, produces 
a computer program, automatically determines the size of 
the program, provides code reuse, provides parameterized 
reuse, determines internal storage needs, determines 
iterations, loops, and recursions, organizes into hierarchies, 
automatically determines architecture, implements a wide 
range of programming constraints, and operates in a well-
defined way.   

We describe an approach where the GP at least partially 
possesses the last three attributes: wide applicability, 
scalability, and competitiveness with human-produced 
results.  The attributes are needed to produce the ultimate 
goal of the system for automatically creating computer 
programs to produce useful programs. 

We extend the work of Pryor (1998) and Barnette et al. 
(2000) who applied evolutionary methods to the 
development of robotic behavior.  Pryor (1998) originally 
developed a genetic programming model to solve a suite of 
high-level robotics problems.  The motion of Pryor’s 
“robugs” was idealized and highly constrained so that the 
focus of his evolutionary model could be on high-level 
navigational behaviors and goals.  Low-level maneuvering 
issue--such as locomotion, steering, and braking control--
were not initially addressed.  Instead, the simulated robugs 
were constrained to move on a discrete two-dimensional 
square grid with instructions such as “turn” or “move 
ahead”.  

Behaviors were automatically generated using a genetic 
program to solve a series of problems in which robots are 
randomly distributed on a grid with obstacles and rewarded 
for finding a source that is emitting a signal.  The required 
high-level navigational behavior can be encapsulated as a 
computer program, which can be engineered by a variety of 
methods.  In the simplest case⎯when effective rules are 
easy to conceive and implement⎯the behavior can be coded 

by hand.  For trivial goals, common sense is all that is 
required for inventing rules.  More difficult challenges 
require more sophisticated solutions, which can be 
generated by a variety of optimization methods including 
thermodynamic analogy models, conventional guidance 
theory, or reinforcement learning. 

Pryor (1998), and Barnette et al. (2000) outline the details 
of the implementation, and the specifics are not repeated 
here.  The representation allows a great deal of flexibility, 
and can be adapted to many types of problems.  The 
behavior programs execute by traversing a tree that is made 
up of building blocks called nodes, which can either be a 
function or a terminal.  Functions perform operations and 
contain pointers to other nodes.  Terminals return values 
that result in an instruction to the robot.  The trees 
themselves are generated by a genetic programming model 
originally developed by Pryor (1998) and based on methods 
described by Koza (1992), within a general framework 
presented by Holland (1975).  Genetic programming is a 
type of genetic algorithm, an evolutionary computing 
method that is based on the principles of biological 
evolution. 

Artificial evolution takes place over many discrete steps 
called generations.  Generations in nature are not 
synchronous because lifetimes and breeding times vary in 
length, but evolution has been in operation for billions of 
years on Earth.  In the model they are synchronized for 
simplicity, and the number of generations is limited by 
practical considerations to hundreds.  Each generation 
consists of a population of individuals.  In nature these are 
organisms and the population size can vary and can reach 
numbers of millions or billions.  In the model they are 
computer programs and the populations are held fixed for a 
given problem, with typical sizes on the order of thousands.  
The Darwinian principle of “survival of the fittest” is 
applied.  In nature, any individual that survives long enough 
to breed and generate offspring is fit by definition.  In the 
model, each individual behavior program is assigned a 
numeric score based on a “fitness function” chosen by the 
researcher to represent the problem, and survival depends on 
rank.  Finally, the individuals must reproduce.  In nature, the 
genotype is carried by DNA, which is mixed between 
individuals by sexual reproduction, and random processes 
occasionally introduce mutations.  The human genome 
contains between 30,000 and 100,000 genes representing 
many millions of base pairs.  In the model, the “genotypes” 
of two individuals are mixed with a crossover operator, and 
random mutations are introduced to allow exploration of 
other regions of the “fitness landscape”  (see Koza (1992) 
for more a more detailed descriptions of these concepts).  
These artificial genomes have much lower information 
content than DNA in nature, containing hundreds of genes 
represented by thousands of bits of information. 
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2.2. Autonomous Mobile Robots 
 

An autonomous mobile robot in this work refers to 
software construct situated in an environment in which it is 
capable of self-directing freedom in pursuit of its goals. 
(Wiess, 1999)  An agent is embodied if it occupies a space 
in an environment and affects the environment.  Embodied 
agents consists of a) sensors used to observe their worlds, b) 
the cognitive component used to plan an action, and c) 
actuators (or effectors) used to carry out the action.   

In a deliberative, logic-based paradigm, mobile robot 
control is divided into sense, plan, and act phases, with each 
phase handled respectively (Gat, 1997). The cycle is 
repeated at regular and very small time intervals throughout 
the agent’s operational period. This paradigm works best for 
well-defined, representable problems. Unfortunately, many 
of the environments where embodied agents might be used 
(certainly in most real world environments) demand that the 
agents make decisions with alacrity due to the high rate of 
environmental change.  As environments become more and 
more dynamic and complex, the problems become more 
severe, eventually causing the agents based on a 
sense/plan/act cycle to become impractical (Brooks, 1991).   

In an effort to solve these very difficult problems facing 
autonomous systems, the new approach given many names 
by different researches, including the “animat” approach 
(Wilson, 1985), task-oriented subsumption architecture 
(Brooks, 1986), computational neuroethology (Cliff, 1991), 
and behavior-based AI (Maes, 1993) has emerged. Rather 
than explicitly planning, the reactive, behavior-based agents 
would simply re-observe the world at every computational 
step and act on what they perceive at that instant.  The 
agent’s decision-making function is assembled from a 
number of simple behaviors that are triggered in response to 
sensory input.  The simple priority-based behavior 
arbitration and lack of complex planning allow agents to 
react quickly to situations that demand it.  However, while 
solving one problem by being adept at reacting to situations 
and real-time decisions, several others--such as scalability, 
inability to learn from past mistakes, and lack of cooperative 
behaviors--were introduced. 

 In Wooldridge & Jennings (1994) previous research in 
these approaches, as well as very active research in hybrid 
architectures, have been summarized.  Their strengths are 
complementary and combining the two approaches can 
mitigate some of their weaknesses.  In a layered, hybrid 
approach, the agent’s subsystems are arranged in a hierarchy 
with higher layers dealing with information at increasing 
layers of abstraction. 

We describe a hybrid approach that addresses the 
challenge of achieving an optimal (or least acceptable) 
balance between reactive and deliberative behaviors.  It 
differs from most existing hybrid architectures in two key 
ways.  First, it uses a combination of fidelity levels from 
each approach.  Second, it makes use of a vertical and 

horizontal hierarchical structure to manage the interaction 
between the layers. 

 
2.3. Navigation 
 

Map-learning and path-planning strategies are very active 
research in the context of autonomous vehicles.  Current 
literature (Meyer & Filliat, 2003; Filliat & Meyer, 2003) 
discusses numerous navigation strategies and outline the 
adaptive capacities each afford to cope with complex, 
dynamic environments. The algorithms insist on being 
tightly coupled with the vehicle that is used. 

As a benchmark for implementing and testing our various 
concepts, we are using a grid-based UAV (or bird) problem 
defined by Pryor & Barton (2002).  The problem is similar 
to the robug problem in that the bird is constrained to move 
on a two dimensional Cartesian grid.  It requires flight 
behavior logic to search for uplift regions and investigate 
the surrounding area without crashing.  This problem is 
more complicated than the robug problem because of the 
different procedures that must be done sequentially.  The 
agent must search and map the uplift region before the 
surrounding area can be explored, and conflicting goals of 
exploration versus exploitation (of the lift zone) must be 
balanced.  This conflict was too difficult for a conventional 
genetic program, and more advanced methods had to be 
added. 

A rectangular “lift zone” is generated with its short 
dimension fixed at 20 units and its long dimension 
randomly chosen from a range of between 85 and 105 units.  
The long-axis is randomly oriented along the x, -x, y, or -y 
axis of the Cartesian coordinate system.  The rectangle is 
placed such that the origin is 5 units from one end, and 
centered on its width.  This leaves between 80 and 100 units 
extending on one of the four directions.  A bird is placed 
with its orientation chosen randomly from one of the four 
directions at a random location within a 100100 ×  square 
box centered on the origin, at an altitude of 20++ yx  
units.  When it is outside the lift zone, it loses one unit of 
elevation for every time step.  Inside the lift zone it gains 
one unit, up to a maximum of 250.  It moves one positive or 
negative unit along either the x or y-axis, every time step.  It 
can go straight, turn left, or turn right (a modification to the 
benchmark allows for U-turns).  The fitness is defined by 
the maximum distance away from the origin that a bird 
reaches before returning to the lift zone.  The actual fitness 
is associated with the evolved behavior program, not with a 
given instantiation of the bird, so the fitnesses of individual 
birds running the same program--but with a range of 
initializations—are averaged.  If its altitude goes to zero, a 
bird crashes and dies, and its contribution to the fitness 
function is assigned a large negative value.   

This would appear to be an extremely simple problem 
compared to actual flight, but it involves staged and 
somewhat contradictory goals that force a balance between 
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exploration and exploitation.  The conservative bird will 
stay in the lift zone to preserve its life, but will get a low 
score. The bold bird will fly away from the lift zone and 
increase its risk of crashing.  The highly ranked bird will 
require a delicately tuned algorithm.  The benchmark also 
involves a set of goals that must be accomplished in 
sequence: 1) the bird must find the lift zone, 2) the bird must 
exploit the lift zone, 3) the bird must explore away from the 
lift zone, and 4) the bird must return to the lift zone. 

To tackle problems with this level of complexity, we are 
now developing new methods of adaptive waypoint 
following as a means of high-level guidance to vehicles 
without regard to lower-level propulsion and physics or 
middle-level autopilot algorithms, described in Section 6. 
 
3. Evolution, Design, and Embodiment 
  

Embodiment is the ability of a system to adapt to, learn 
from, and develop with its environment.   Embodiment 
determines whether that system will “survive” in the 
environment.  More elaborate autonomous mobile robots 
require increasing computational effort that often proves too 
cumbersome and slow for real-world applications.  The 
term, graduated embodiment, is the notion of mobile robot 
adapting to appropriate fidelity ranges. A physically 
embodied agent must have: 
 

• The ability to coordinate actuator and sensor 
modalities to explore its environment,  

• Goal-oriented behavior on micro and macro levels, 
• Bi-directional interaction between the agent and its 

environment, 
• Bi-directional communication between the agent 

and other agents in the environment, and 
• An understanding of the physics of the 

environment. (Duffy, 2001). 
 
Biological evolution itself followed a path of graduated 

embodiment.  Building blocks for biochemical pathways 
and structures developed during the billions of years before 
life was fully embodied, when it consisted of single-celled 
prokaryotes with limited sensory connections to a relatively 
stable, uniform, and predictable environment.  Most of 
evolutionary history was spent developing the tools that 
would later be combined and recombined while graduating 
through higher levels of embodiment, from the first 
multicellular animals (metazoa), through homo sapiens. 

Animat research attempts to follow closely with the 
thought that animals are created by biological evolution, not 
by a designer.  Animals thrive under real-world conditions 
because their forms and behaviors are honed by billions of 
years of natural selection.  Our modern understanding of the 
origin animal behavior has its roots in Darwin’s four basic 
postulates:  

 

• Variation exists among individuals in a population. 
• Some of these variations are inherited by the next 

generation. 
• More offspring are produced in every generation 

than are able to survive. 
• Individuals with the most favorable variations are 

the ones that survive and reproduce. 
 

Consequently, survival and reproduction are not random. 
Favorable variations are selected by nature.  Forms and 
behaviors that appear to have been designed are actually the 
result of Darwinian evolution. 

Evolutionary approaches to behavioral engineering are 
biomimetic at deeper level, because they mimic the 
adaptation that led to the structures and behaviors 
themselves.  Evolutionary methods are inherently suitable 
for application to the graduated embodiment strategy, in 
which high-level behavior algorithms that are initially 
developed using evolutionary computing methods in a 
relatively low-fidelity, disembodied modeling environment 
can be migrated to useful applications.   

Evolutionary computing is appropriate for behavior 
engineering because it works with behavior building blocks 
that can be re-used and re-combined, much in the same way 
that biology operates.  In biological systems, information is 
encoded in DNA, the raw material on which evolution 
operates.  DNA holds the internal representation of an 
organism, its genotype.  The outward manifestation of an 
animal, its phenotype, includes the reflexes, behavior, and 
intelligence that allow it to survive and reproduce as an 
embodied entity.  “Internal” biomimetic behavior 
engineering emulates life in this respect, and generates 
behaviors that emerge by operating directly on the 
genotype—in this case represented by computer code.  It 
depends on some degree of embodiment, and is a form of 
“new AI”. 

A drawback of artificial evolution is that it does not come 
close to the fidelity of evolution in the natural world in 
terms of numbers of generations, number of individuals in a 
population, or information content of the genome.  
However, the largest obstacle seems to be the fact that 
evolutionary computing methods are simulations that model 
“virtually embodied” entities, whereas natural evolution 
operates in the real world on actual embodied individuals.  
Unless the “off-line” simulation environment captures the 
important characteristics of the real world, successful 
behaviors may not survive when exposed to reality.  In 
biology, on the other hand, the fitness of individuals has 
always been tested “on-line” under actual survival 
conditions. 

It is not a profound observation that virtual embodiment is 
not the same as actual embodiment.  The best argument for 
the physical grounding hypotheses of new AI is summed up 
by Brook’s (1990) remark that “…the world is its own best 
model. It is always exactly up to date. It always contains 
every detail there is to be known.”  But to evolve robotic 
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behaviors from scratch in the real world would be 
impossible for lack of prokaryotic, self-replicating robots 
and billions of years. This is an extreme restatement of the 
fact that strong embodiment is not possible with current 
technology (Sharkey & Ziemke, 2000).  A realistic strategy 
for artificial evolution is to skip the impossible steps and 
graduate from virtual to physical embodiment through 
increasing levels of fidelity. 

Natural evolution’s embodiment graduated from simple to 
complex organisms.  Only during the most recent ticks of 
the geologic clock did biological creatures possess the 
directed mobility, good eyeballs, and large brains that 
appear to be prerequisites for truly intelligent behavior (e.g. 
Moravec, 1984).  Technology already permits robots with 
these physical attributes, but they seem to be insufficient 
because of the lack of history in the software.  Biological 
evolution is a historical process that takes place in a world 
where the future cannot be predicted.  The DNA that 
encodes animal behaviors contains information built up over 
the entire span of geologic time.  Successful behaviors are 
the ones that contributed to survival and reproduction 
throughout countless generations, during times when the 
world may have been very different.  The value of a 
particular behavior depends on how closely the present 
resembles the past.  The ability of behavioral adaptations to 
emerge in response to changes in the environment depends 
upon rich and useful genetic variability, which results in 
part from history. 

In the natural world, evolution simultaneously operates on 
an organism’s morphology and behavior; there is no 
qualitative distinction between these two types of 
adaptations.  This is the approach taken by Sims (1994) 
whose virtual animats involve co-evolution of both form 
and function.  This strategy greatly expands the solution 
space that can be explored and allows the animat 
morphology itself to be part of the optimization process.  
Sims’ animats are, however still subject to limited degrees 
of freedom and constraints that are not imposed in the 
natural world.  Moreover, the optimal solutions do not 
necessarily yield physical systems that could lead to an 
engineering design that would allow embodiment to be 
realized in the real world. 

Engineering considerations require that hardware and 
software design be decoupled in order to achieve graduated 
embodiment.  The alternative would be to redesign new 
hardware for every generation (with appropriate genetic 
variability) to reach an optimum.  A more realistic approach 
is to develop building-block behaviors that can be applied 
across a broad range of hardware designs.  As the physical 
robot design changes, a new behavior can be allowed to 
evolve from the pre-evolved building blocks.  This method 
is a hybrid of engineered physical attributes and evolved 
behaviors, but takes advantage of “history” information 
embedded in the artificial genome that was accumulated 
during lower levels of embodiment and fidelity. 

Some practitioners of evolutionary computing adopt a 
purist philosophy that “evolution should be allowed to 
operate on its own and eventually it will find the best 
solution.”  This hands-off approach attempts to bypass any 
human intervention whatsoever, presumably because human 
biases might prevent global best--but unanticipated-- 
solutions from being discovered by machine.  We reject this 
approach.  It is impossible to carry out for two reasons.  
First is scalability; unlike the natural world, artificial 
evolution does not have access to billions of years, the high 
information density of DNA, nor the large populations of 
individuals that can harbor a wide range of genetic 
variability.  Second is the fact that artificial evolution by 
computer can never be free of human biases, because 
evaluation functions used to rank the success of various 
phenotypes are written by humans and already contain 
biases.   

Moreover, for robotics the hardware is also human 
designed.  The problem—by its very definition—is a hybrid 
that contains both designed and evolved components.  There 
is already an interface between designed hardware and 
evolved software, and this interface must include designed 
software components--such as device drivers for sensors and 
actuators--to function.  The boundary between designed and 
evolved components is arbitrary.  For all these reasons, we 
have adopted what we view as the most pragmatic approach 
in which genetic programming methods are used to extend, 
but not replace, the creativity and intelligence of the 
designer. There is no such thing as cheating by hand-writing 
useful functions, but ultimately it the “natural selection” that 
decides when to use designed building blocks, and when to 
use those that have been evolved from scratch.  The result is 
a hybrid of designed and evolved components at all levels of 
organization. 
 
4. Evolution with Building Blocks 
 

The backbone of our research makes use of building 
blocks in evolutionary modeling and simulation.  For 
engineered software, the concept of building blocks allows 
various parts of code to be encapsulated according to 
function.  Software that is not built in this way degenerates 
into “spaghetti code” that is fault-intolerant and difficult to 
modify or improve.  Likewise, if evolutionary methods are 
used to generate programs to accomplish large and complex 
sets of tasks, the resulting code is often inflexible and a 
poorly optimized dead-end.  

Building blocks can be combined either horizontally or in 
a vertical hierarchy. The most effective strategy is to mix 
evolved building blocks with engineered or hand-written 
building blocks.  For vertically integrated problems, some 
aspects are easy to build by hand, whereas others are very 
difficult or impossible when the model has many degrees of 
freedom.  Our effective strategy is to mix evolved building 
blocks with hard engineered or hand-written building 
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blocks. Our intent is to evolve functionality requiring 
human and machine collaboration. 
 

Rattlescape:  A simple conceptual model can be used to 
illustrate these ideas.  Suppose, for example, we wanted to 
design a behavior for a robotic rattlesnake whose only goal 
is to survive in an environment where it might be stomped 
by a large grazing animal.  The human-designed snake 
hardware would consist of sensors and actuators.  We want 
a snake that can sense, slither, and rattle like a real snake.  A 
greatly simplified snake animat might have a dozen sensors 
and a hundred actuators.  Evolution from scratch is 
impossible for reasons of scalability. 

We know from human experience that a buffalo will 
avoid stepping on a buzzing rattlesnake, so we could write a 
driver by hand that activates the tail vibration actuators in a 
cycled sequence at a frequency that creates the appropriate 
sound that will startle a buffalo.   

Human observation also tells us that snakes exhibit 
several different modes of locomotion, most of which 
involve wavelike motion due to muscles contracting in a 
cyclic sequence.  Armed with this knowledge, we may wish 
to reduce the number of degrees of freedom by considering, 
for example, symmetric and anti-symmetric normal modes 
as the building blocks of locomotion, and allow artificial 
evolution to operate in a limited virtual world to select the 
phases and amplitudes that yield the most efficient “slither”.   

However, we might not know the best way to detect a 
large mammal, other than to suspect that the task requires 
some combination of vibration, heat, and visual motion 
sensing.  The large-mammal-detection algorithm might be 
evolved from much smaller sensor data building blocks, 
through a sequence of virtual worlds that model the 
coupling of ground motion to vibration sensors, and heat to 
infrared sensors.  

We now have three algorithms with three different levels 
of organization, and three different types of connections 
between their designed and evolved components.  If they 
can be considered independent behaviors, another stage of 
artificial evolution can be used to find a way to combine 
them that leads to the best snake survival rates.  An obvious 
solution that would be quickly found by a genetic program 
would be that shown in Figure 1:  near animals would 
activate the rattle behavior, and distant animals would 
activate “slither”. 

Now suppose the world changes.  The buffalo are gone 
and replaced by human beings who react to buzzing 
rattlesnakes by killing them.  The same building blocks can 
be put together in a different way to generate a new survival 
behavior.  In the successful snake animats, the detection 
algorithm now inhibits the vibration driver and perhaps 
activates the slither driver for all detections. 

For this illustration we have made an assumption that will 
often fail in practice.  We assumed that the three high-level 
behaviors operate in complete isolation.  It may turn out that 
slither and rattle use common actuators and cannot be 

simultaneously activated.  Another possibility is that the 
detection algorithm requires a stationary snake.  Treatment 
of the behaviors as independent building blocks greatly 
reduces the number of degrees of freedom, but it may also 
prevent the discovery of new survival adaptations and 
higher-level optimization. 

Our way of dealing with this is to apply staged 
optimization, in which various high-level behaviors are 
evolved independently as in the above example.  A global 
optimization is then performed by holding some behaviors 
fixed and allowing others to co-evolve with the total system.  
This might lead to a new emergent behavior, such as “rattle 
and slither”, if that is a positive survival adaptation. 

 

 
 Large Mammal? 

Near Distant 

Rattle Slither  
Figure 1:  A composite behavior tree is constructed of three 
subtrees which can be hybrids of sub-subtrees that have both 
designed (white) and evolved (gray) components at different 
scales of organization. 

5. Staged Optimization and Pruning 
 

For the same problems, the behavior optimization process 
is much more efficient when a complex task is broken into 
smaller subtasks.  For the benchmark problem described in 
Section 2.3, the initial genetic flight control algorithms that 
have been developed involve mere thousands of operations 
and can be described by a “genome” of a few thousand 
bytes. A simple doubling of the number of tasks that the 
behavior must manage--or a similar increase in fidelity--
would put the problem out of reach on most compute 
clusters.  Building block efficiency seems to work best 
when the various subtasks are independently optimized in 
parallel by using a “policy table” which can be expressed as 
a root node with a set of pointers to the various behavior 
trees.   

Many iterations of Pryor’s (1998) genetic programming 
tool were implemented to tackle this problem, with varying 
degrees of success.  Versions of the code were written with 
single trees, multiple trees, and various trees executed in 
sequence.  In some, a “ponder tree”, which was intended to 
act as a higher processing layer, was inserted between the 
sense level and the decision trees which output the action to 
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be taken.  In Figure 2, the relative success of various 
methods can be seen as measured by the maximum fitness 
value reached by various genetic programs, and the rate at 
which it is reached.  As it turned out, the existence of an 
evolved ponder tree inhibited the rate of optimization. 

We have developed generalized versions of Pryor’s GP, 
with the added goals of 1) platform independence, 2) 
modularity, and 3) integrated visualization tools.   The data 
structure of the tree that contains the flight control algorithm 
consists of multiple arrays that keep track of state variables 
(for flight simulation), calculated variables (for high-level 
situational awareness and decisions), calculated integers (for 
policy table flags), registers (genetically calculated values) 
and pointers (for multiple decision trees that depend on 
policy flags).  Array dimensions are determined at compile 
time, and depend on the evaluation function, the number of 
degrees of freedom of the flight vehicle, and whether the 
flight space is discrete or continuous.  By generalizing the 
genetic programming, behaviors for any environmental rules 
can be developed with the same code, from the most basic 
(4 degrees of freedom, discrete space, simple flight rules, 
fixed lift zone) to the most advanced (6 degrees of freedom, 
continuous space, full aerodynamics, turbulent boundary 
layer).  We used the most basic example as a benchmark 
because it runs much faster than a simulation that must 
solve realistic equations of motion at every time step. 

The first version that demonstrated fast convergence and 
approached the theoretical best solution for the benchmark 
problem is the one that implemented a policy table.  This 
makes sense because of the sequential and competing goals 
described earlier.  It is because a bird in one situation, such 
as needing to find the lift zone, needs to be running a very 
different program than one in a situation where long-
distance exploration is paramount.  For that reason, several 
trees were evolved independently, and each were called 

based on the a policy table value that represented its current 
situation, such as 1) the bird has not discovered the lift zone, 
2) the bird is inside the lift zone, 3) the bird has reached and 
altitude of 250, or 4) time is running out.  When such a 
policy table was implemented, the ability of the code to find 
good solutions increased markedly. 

Staged optimization (Figure 3) led to even faster 
improvement in evolved behaviors, but required more 
human intervention.  In the staged process, one or more sub-
behaviors can be locked, while the remainder are 
independently optimized.  This procedure greatly reduces 
the parameter space to be searched by the program. 
Combining staged optimization with sequential pruning of 
the behavior trees led to the fastest improvement.  In 
sequentional pruning (Figure 4), the behavior code is 
reduced in size by allowing the genetic program to remove 
superfluous parts by applying a size penalty to the fitness 
function.  By locking all trees except the one to be pruned, 
this process can be accelerated. 

Platform independence is important for computationally 
intensive genetic programming applications.  This was 
achieved by implementing a text-based (and in later 
versions, an XML-based) description of the program trees in 
place of the original binary representation.  These text trees 
are compact, with about a 10 Kbytes storage requirement 
per behavior.   Because the computation-to-communication 
ratio can be extraordinarily high for this application, extra 
bandwith, or even the latency of writing to disk, is not a 
major problem. 

The code was reorganized so that the evaluation routines 
were broken into modules that could be called either from 
the genetic programming tool or another (e.g. visualization) 
program.  By keeping the modules independent, the code 
could be applied to other problems simply by inserting a 
different evaluation function.  In the most recent version, the 
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code has been converted to a fully object oriented 
representation. 

As a more complex test problem for evaluating our 
implementation of building blocks, we merged our 
benchmark lift zone problem with an image-searching 
problem.  We separately evolved a single-tree image zone 
search behavior, and then combined it with our five-tree lift 
zone algorithm to form a new, more complex six-tree 
behavior.  Because we are able to store series of trees as 
ASCII text files, the merging of behaviors is a simple as file 
concatenation (although files can also be kept separate). The 
horizontal integration directly addresses the scalability of 
GP programs.  

We recognize that some complex real-world behaviors 
will be much more difficult to break apart into smaller units, 
and in other problems the subtasks are not independent and 
must be optimized in consort.  We think that by using 

building blocks we can allow the behavior designer to make 
the decision as to what constitutes a subtask, and to provide 
flexibility as to which sets of subtasks are most effectively 
co-evolved. 

 

 
 
Figure 3:  Staged optimization reduces search space.  White 
tree is a designed policy table, black trees are locked, and 
gray trees are undergoing evolution. 

6. Navigating with Adaptive Waypoints 
 
Integrating behavior algorithms in a vertical hierarchy is 

also required to create a comprehensive behavior system 
that includes cognative, instinctual, and reflexive levels of 
behavior in addition to physical model attributes.  In one 
example of vertical integration, we are implementing 
adaptive waypoints (Figure 5) to provide a means of high-
level guidance to vehicles without regard to lower-level 
propulsion and physics or middle-level autopilot algorithms.  
Adaptive waypoints can be used to capture goal-oriented 
and collective agent behaviors that can be transferred from 
one type of vehicle to another as a self-contained behavioral 
“building block”.  Each individual vehicle is guided by its 
own dynamic waypoint, which moves in such a way as to 
lead the vehicle toward its individual or collective goal. 

Waypoints are coordinates in a virtual world.  An entity 
can follow waypoints in the order they are given (e.g., read 
coordinates from a file).  Or, entities are often assigned to 
perform certain tasks (e.g., loiter) once they reach a certain 
location. Waypoints can be either user-generated or entity-
generated, and can be static, dynamic, or adaptive.  A 
waypoint can thought of as an internal representation, or 
part of an agent’s cognitive map.   

Waypoints can take on various attributes of longevity, 
type-identification, and goal-orientation.   

Longevity: Static waypoints are intended to be permanent 
navigational aids and can be stored. Dynamic waypoints are 
intended to mark locations that are of temporary tactical 
importance (e.g., the last known location of an enemy).  
While static waypoints remain in the entity memory queue 
indefinitely, dynamic waypoints have a clearly defined 
lifespan.  After the lifespan is up or fade factor expires, the 
dynamic waypoint expires and is no longer stored by the 
entity.  Adaptive waypoints can either be static or dynamic 
but their longevity is determined reactively since it responds 
in a timely fashion to changes in the environment.  Adaptive 
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Figure 5:  Adaptive Waypoint (AW) and Flight Dynamics 
Model (FDM). 
 
Figure 4:  Pruning of trees removes useless code.



waypoints are determined by continuously running 
processes. 

Type identification: All types of waypoints can be tagged 
with types to identify what kind of behavioral information 
they represent or any other information in addition to 
position.  Static and dynamic waypoints have fixed type 
identification.  Adaptive waypoints are autonomous since 
they exercise control over their own actions and can take on 
a new identities when needed. Identity can be learned and 
changed based on previous experiences. 

Goal-orientation:  Often, waypoints are used to solve 
situational goals.  Static waypoints have no goal-orientation.  
Dynamic contain information that may aid others in 
obtaining a goal. Adaptive waypoints do not simply act in 
response to the environment but are goal-oriented and can 
communicate with other agents to determine a goal. 

The intelligence of the waypoint can be transferred from 
one type of vehicle to another as a self-contained behavioral 
“building block.”  Each individual vehicle is guided by its 
own adaptive waypoint, which moves in such a way as to 
lead the vehicle toward its individual or collective goal. The 
intelligence of a vehicle can be contained entirely within the 
adaptive waypoint that is aware of and can respond to the 
state of the vehicle, the vehicle’s environment, it’s high-
level goal, and (in the case of collective behavior) the state 
of neighboring vehicles.  

At every time step, the vehicle position is updated based 
on the position of its waypoint, on its state, on its dynamics 
model, and on the autopilot system whose goal is to take it 
to the waypoint.  The waypoint coordinates are updated 
based on its behavior algorithm in combination with the 
location and direction of the vehicle, but not on the details 
of the internal state of the vehicle. 

Adaptive waypoint behavior algorithms can be developed 
using the methods of genetic programming and graduated 
embodiment by staged optimization (Figure 6).  The 
advantage of graduated embodiment is that behaviors can be 
evolved in the absence of a high-fidelity vehicle model, 
reducing the computational cost.  Basic waypoint behaviors 

can be developed using low-fidelity vehicle models that 
only approximately reflect the actual vehicle performance.  
Once a waypoint behavior is developed for the low-fidelity 
vehicle model, the behavior can be tuned through successive 
stages of higher fidelity, until the highest fidelity model is 
achieved.  This is the essence of graduated embodiment. 

 
Example problem: We can illustrate these concepts with 

a stripped-down problem that shows that a simple adaptive 
waypoint that can be graduated from a one-dimensional 
agent to a vehicle that moves in two-dimensions.  Suppose 
we have a vehicle (V), a target (T), a fixed waypoint (FW) 
an adaptive waypoint (AW), and a home (H).  Let the initial 
position of V=0 and FW=100.  T is a random number 
between 1 and 200, and H=0.  The position of AW at every 
time step is entirely determined by the GP. 

For the simple world, the rules of motion allow V to take 
one step in the direction of AW every time step.  The rules 
of detection are that V detects T when they have the same 
coordinate.  To be successful, V has to locate any target 
between 1 and 100, and return to H.  The evaluation 
function is such that the most fit behavior is the one that 
completes the goal in the shortest time, averaged over some 
number of tests. 

The behavior can easily be coded by hand, but our GP 
discovered it within the first few iterations:  The AW is set 
at infinity until the vehicle reaches either T or FW, and then 
AW is set to negative infinity.  When the vehicle is allowed 
to explore in a two-dimensional plane, with a constraint on 
its turning radius, but otherwise following the same rules of 
motion, the adaptive waypoint no longer works because the 
vehicle does not return home (because of the offset due to 
its turning radius).  A single mutation from the first solution 
will, however, solve the problem.  The final AW location 
evolves from negative infinity to zero. 

The point of this illustration is that in going from the 
simple to the more complex, many parts of the problem may 
already be solved and those behaviors can be incrementally 
evolved in a way that allows building blocks and 
information to be re-used. 
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Figure 6:  Graduated embodiment of adaptive waypoint takes 
behavior through stages of evolution. 

7. Conclusions 
 
We have introduced a hybrid AI approach that has many 

advantages for generating autonomous mobile robot 
behaviors that operate in a complex, dynamic environment. 
This method is needed to generalize across different 
conditions because of the diversity of physical 
environments, vehicles, locomotion abilities, and interaction 
dynamics with other objects, We believe navigation 
strategies, such as, “search-for-target”, “move-to-goal”, and 
“avoid-collision”, are reusable using the method of adaptive 
waypoints, provided they are adjusted to suit the physical 
capabilities of each vehicle using graduated embodiment. 
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